Functional grouping of yeast genes via biclustering microarray data.

نویسندگان

  • Daqing Mao
  • Yi Luo
  • Maosheng Cheng
  • Jinghai Zhang
چکیده

Biclustering algorithm on Gibbs sampling strategy is a recruit in the field of the analysis of gene expression data of microarray experiments. Its feasibility and validity still need to be researched not only for synthetic datasets but also for real datasets. Here we investigated a biclustering algorithm on a microarray dataset of Yeast genome through building a database for storing microarray datasets and MIPS data, and running the scripts on Matlab platform to discover gene patterns. In contrast with standard clusterings that reveal genes behaving similarly over all the conditions, biclustering groups genes over only a subset of conditions for which those genes have a sharp probability distribution. It has the key advantage of providing a transparent probabilistic interpretation of the biclusters. Its basic strategy of Gibbs sampling does not suffer from the problem of local minima that often characterizes expectation maximization, so that the patterns should be more global and accurate. Also we tested it with the known explanation of genes in MIPS, objectively to demonstrate the effectiveness and deficiencies of biclustering approach, and the functions of a few unknown ORFs in some bicluster can be deduced in the present research. In addition, the result of similarity searching in Blast-Search can be an assistant evidence for its effectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

به کارگیری خوشه‌بندی دوبعدی با روش «زیرماتریس‌های با میانگین- درایه‌های بزرگ» در داده‌های بیان ژنی حاصل از ریزآرایه‌های DNA

Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...

متن کامل

Analysis and visualization of gene expression data using biclustering: A comparative study

In the last few years the gene expression microarray technology has become a central tool in the field of functional genomics in which the expression levels of thousands of genes in a biological sample are determined in a single experiment. Several clustering and biclustering methods have been introduced to analyze the gene expression data by identifying the similar patterns and grouping genes ...

متن کامل

TriGen: A genetic algorithm to mine triclusters in temporal gene expression data

Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping genes to be evaluated only under a subset of the condit...

متن کامل

Deterministic Approach for Biclustering of Co-Regulated Genes from Gene Expression Data

This paper presents an expression pattern based biclustering technique for grouping both positively and negatively regulated genes together as co-regulated genes from microarray expression data. Most interesting variants of this problem are NP-complete requiring either large computational effort or the use of lossy heuristics to short circuit the calculation. Our approach deterministically find...

متن کامل

Iterated Local Search for Biclustering of Microarray Data

In the context of microarray data analysis, biclustering aims to identify simultaneously a group of genes that are highly correlated across a group of experimental conditions. This paper presents a Biclustering Iterative Local Search (BILS) algorithm to the problem of biclustering of microarray data. The proposed algorithm is highlighted by the use of some original features including a new eval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2005